
Naı̈ve Bayesian based Temperature and Energy
Aware Scheduling of Heterogeneous Processors

Rashadul Kabir
Dept. of Electrical and Computer Engineering

Presidency University
11/A, Road 92, Gulshan, Dhaka 1212, Bangladesh

Email: rashadk@pu.edu.bd

Baback Izadi
Division of Engineering Programs

State University of New York at New Paltz
New Paltz, NY, 12561, USA

Email: bai@engr.newpaltz.edu

Abstract—Directed acyclic graph (DAG) is a popular
representation of an application, which includes application
characteristics such as task dependencies, task execution time
and inter processor communication time. Temperature and
Energy aware Dynamic Level Scheduling (TEDLS) algorithm
has been shown to minimize energy consumption and processor
temperature while executing DAG structured applications in a
heterogeneous environment with DVS enabled processors. To
improve selection process of ideal processor-speed combina-
tion, this paper provides a Naı̈ve Bayesian Classifier (NBC)
based scheme. Our result demonstrates an improved energy
consumption resulting from lower computational overhead.

Keywords-Heterogeneous computing; DVS; DAG; Schedul-
ing; Temperature and Energy aware; TEDLS; Naive Bayesian
Classifiers

I. INTRODUCTION

Modern computer applications are quite complex in
nature and consist of tasks that vary widely in complexity. If
simple tasks are scheduled on high performance processors,
they will likely get executed ahead of the deadline, while
consuming excessive energy. Energy efficient cores on the
other hand, can execute the same tasks by utilizing the
total time available for task execution. Thus, to cater to the
computational needs of modern computer applications, an
increasing number of computing systems are now required
to be heterogeneous in nature [1].

In spite of the heterogeneous nature of modern comput-
ing systems, individual annual electrical energy consumption
of data centers in the U.S. is expected to increase to
approximately 140TWh by 2020 [2]. This is equivalent to
the annual output of 50 power plants with an undesirable
annual carbon pollution of about 100 million metric tons.
Therefore, to reduce the impact of new data centers on
the environment and also to make them more economically
viable, researchers [3, 4, 5, 6, 7] have proposed schemes
to reduce energy consumption in a heterogeneous environ-
ment. Processors continue to consume a significant amount
of system’s total power [8]. Thus, by lowering processor
power consumption, power required by data centers can be
significantly reduced. Total electrical power dissipated in
a processor is the combination of the static and dynamic

power. Although, static power is dependent on process
technology [9], per Equation 1, dynamic power [10] is
significantly dependent on supply voltage Vdd,

Pdynamic = α× Cef × V 2
dd × f (1)

Dynamic Voltage Scaling (DVS) has allowed researchers to
vary the supply voltage and thus enable processors to run on
various power budgets. Today, most modern processor man-
ufactures have developed DVS enabled processors [11, 12].
Since processor clock frequency and supply voltage have a
linear correlation [7], power consumption is also related to
execution time, as indicated by Equation 2 [7]. Lower power
consumption can have a trade-off in the form of higher
application execution time.

P ∝ 1

t3
(2)

Thus, researchers have utilized DVS capability of these
processors to reduce the energy usage at the cost of increased
execution time.

Since energy efficient processors tend to be used more
frequently, they have the tendency to operate at a higher
temperature, which has a side effect of rise in transient
and permanent faults [13, 14]. This has led a multitude
of researchers [13, 14, 15, 16] to use thermal sensors to
acquire processor temperatures to manage the overheated
processors. However, readjusting speed of DVS enabled
processors based on temperature readings can introduce
delays and cause inaccurate speed throttling. Also, one major
drawback in these approaches is the lack of emphasis on
energy usage. In [17], a heuristic scheme was proposed to
efficiently schedule tasks in DAG structured applications
onto heterogeneous DVS enabled processors in order to
minimize execution time, energy usage, and processors’
temperature. Such scheduling has been shown to be NP-
Complete [17, 18].

The scheme in [17] is rooted in Dynamic Level Schedul-
ing (DLS) algorithm [19], which is a non-preemptive com-
pile scheduling heuristic that uses a cost function to mini-
mize execution time of DAG structured application by bal-
ancing the entire workload in a heterogeneous environment

Accepted to the 10th International Green and Sustainable Computing Conference, October 21 -24, 2019, Alexandria, VA, USA.

with DVS enabled processors. It also takes care of the
inter processor communication (IPC) and has a low oper-
ational overhead. Thus, in [7] the Energy Dynamic Level
Scheduling (EDLS) algorithm was developed that focused
on minimizing both application execution time and energy
consumed. An improvement over this algorithm was made
in [17], where the Temperature and Energy aware Dynamic
Level Scheduling (TEDLS) algorithm was proposed. The
algorithm is focused on minimizing energy consumption,
processor temperature and application execution time. The
simulation results showed that, with respect to energy con-
sumption and processor temperature, the TEDLS algorithm
scaled better with increased size of the DAG in comparison
to the DLS and EDLS algorithms. In TEDLS algorithm,
a heat model from [20] was used to predict the final
temperature of processors while running a given task. As
the heat model used energy consumption for estimating the
processor temperature, the temperature value was used to
modify the cost function to incorporate aspects of both
energy consumption and processor temperature. The TEDLS
algorithm schedules tasks to the most energy efficient pro-
cessor as long as it is also one of the cooler processors.

The static implementation of the TEDLS algorithm in
[17] provided many possible cases of processor speed com-
binations with varying execution times, energy consumption
and processor temperatures. In a practical scenario, where
there are thousands of DVS enabled processors, the number
of cases would be significant. To deal with the complexity, in
this paper, we have implemented a machine learning based
approach capable of producing the best choice for processor
speed combinations for a given energy consumption and
processor temperature budget in a dynamic environment.
Our focus has been to come up with a simple yet effective
way to achieve this. One popular classification algorithm,
called Naı̈ve Bayesian Classifier, which is based on Bayesian
Networks introduced by Pearl in [21], has already been
used for finding the influence relation between genes [22],
network traffic analysis [23], text classification [23], anti-
spam techniques for email [24], intrusion protection systems
[25] and even bankruptcy prediction [26]. It provides a way
to come up with the right choice in the shortest amount
of time with minimal input data [27]. Thus, our scheme
utilizes Naı̈ve Bayesian Classifier to select the processor
speed combinations required for application execution.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss some definitions, notations and back-
ground regarding temperature aware task scheduling. Sec-
tion III provides an overview of the TEDLS scheduling
algorithm. In Section IV, we illustrate how Naı̈ve Bayesian
Classifiers can be applied to the TEDLS algorithm. We
also schedule tasks onto a pool of processors using the
TEDLS algorithm by applying the learning algorithm and by
random selection, and compare simulation results. Finally,
concluding remarks are given in Section V.

II. BACKGROUND

In this paper, we assume applications are periodic in
nature and can be represented in DAG structured forms.
Figure 1 depicts a typical DAG application G = (T,E),
where each node denotes a task Ti ∈ T , and each edge
implies the dependency of associated tasks. If two tasks are
performed on separate processors, each weighted directed
edge Eij = (Ti, Tj) ∈ E represents the communication
delay associated with sending output of task Ti to the
processor executing task Tj . The noted values depicted in
Figure 1 are the average communication overhead among
the various processors.

Fig. 1. Example DAG

Figure 2 illustrates a sample pool of three heterogeneous
processors P = {P1, P2, P3} with different speed settings;
SP1 = {S1} and SP2 = {S1, S2} and SP3 = {S1, S2, S3}.
Each processor-speed setting has an associated power usage
and corresponding average execution time.

Fig. 2. Processor Pool and their associated speed and power settings

The TEDLS algorithm utilizes the processors in Figure 2 to
execute tasks in Figure 1. During execution of different tasks
by assigned processors, either a processor may not be ready
(specified as Processor Ready Time) to receive the new task
or the scheduled task may need the result of execution from a
dependent task (Data Ready Time). In either case, a delay in
the execution of task is needed. For example, in Figure 1, if
Task 0 and Task 1 are scheduled to be executed on the same
processor, Data Ready Time (DA1p) and Processor Ready
Time (TF1p) for Task 1 will both be equal to the execution

time of Task 0. However, if Tasks 0 and 1 are scheduled
on different processors p′ and p, respectively, then DA1p

for Processor p will be sum of the execution of Task 0 on
Processor p′ and time required in transferring the results to
Processor p. Another two terminologies that will be used in
our discussion of TEDLS algorithm are Static Level (SLnp)
and Processor Speed Difference (∆np). The former is the
sum of the execution times of tasks along the longest path,
from the current task n to the leaf nodes. The latter is the
difference in execution time of Task n on Processor p with
that of a processor with median task execution times [7].

Temperature and Energy aware Dynamic Level Schedul-
ing (TEDLS) [17] is a list-based scheduling algorithm,
which focuses on minimal energy consumption and low
processor temperature. The algorithm first prioritizes tasks
to be executed and then assigns processors to these tasks
based on a cost function specified by Equations 3 [17], 4
[19] and 5 [17].

TEDLnp = DLnp +DLnp × (1−NormTemp) (3)

DLnp = SLnp −max(DAnp, TFnp) + ∆np (4)

NormTemp =
Tnp(t2)

MaxTemp
(5)

In determining TEDLnp scheduling cost function,
NormTemp is used to penalize the heated processors. Its
value is obtained by dividing the predicted final temperature
Tnp by a maximum operating temperature MaxTemp
(set by the manufacturer). A cooler processor will have a
lower NormTemp, resulting in a higher TEDLnp and
a more favorable opportunity for a task assignment. The
heat model specified by Equation 6 is used to estimate the
processor’s temperature Tnp(t2) for an interval (t2 − t1)
[20]. In the model, β and ρ represent the thermal resistance
and the cooling constant of the processor, respectively.
Pnp is the power consumption of Task n on Processor p.
The model takes into account the rise in temperature when
the processor is active as well as the cooling effect, due
to Newton’s law of cooling [20]. The TEDLS scheduling
algorithm is given by Algorithm 1.

Tnp(t2) =
βPnp
ρ

+ (Tnp(t1)− βPnp
ρ

) exp−ρ(t2−t1) (6)

III. OVERVIEW OF TEDLS ALGORITHM [17]

In this section, through the example DAG application
of Figure 1 and processor pool of Figure 2, we provide
an overview of the TEDLS algorithm. We generate DAG
applications using TGFF [28] software. For the sake of
simulation, we randomize the execution times and consumed
power for each of the 20 tasks in Figure 1 for Processors 1, 2
and 3 within ±10% of the nominal values in Figure 2. Based
on these randomized values, we come up with the Median
Execution Times, which is shown in in Table I. Also, using
the Median Execution Times we calculate the Static Levels

for various tasks. In this example, we first consider the case
where processors are set to be running at their maximum
speeds, i.e. P1@S1, P2@S1 and P3@S1.

Table I
STATIC LEVEL TABLE

Task Number Median Times Static Levels
0 15.71 116.72
1 15.86 101.01
2 17.12 85.15
3 16.17 83.86
4 17.36 68.03
5 15.86 49.53
6 16.10 67.69
7 15.76 48.83
8 16.54 16.54
9 17.53 33.07
10 16.01 51.59
11 17.00 50.67
12 17.78 17.78
13 16.42 16.42
14 18.00 35.58
15 17.85 33.67
16 15.82 15.82
17 15.53 15.53
18 17.58 17.58
19 16.96 16.96

According to Algorithm 1, we first need to calculate the
static level (SL) and the processor speed difference (∆)
of all tasks. SL gives priority of execution to the longest
task path. ∆, which is the relative speed of a processor to
the median processor (P2@S1), gives priority to the faster
processor for task execution.

Algorithm 1 (TEDLS)
Calculate Static Level and ∆ for every task
while ∃ unscheduled task do

Make list of Ready Tasks
Estimate Tnp(t2) for Ready Tasks on Processor p using
Equation (6)
Calculate NormTemp using Equation (5)
Calculate TEDL for Ready Tasks using Equation (3)
if Tnp(t2) of processor-task pair with highest value of
TEDL != Highest Tnp(t2) then

Schedule task-processor pair with the highest TEDL
else

Schedule available task-processor pair with the next
highest TEDL

end if
Mark assigned task as scheduled
Calculate DA and TF for next Ready Tasks

end while

In Figure 1, Task 0 has 7 end tasks (i.e. leaf nodes in the sub-
tree rooted in Task 0 node). SL for Task 0 can be obtained
by taking the sum of the median execution times of the
tasks along the longest execution path, namely, T0 → T1 →
T2 → T4 → T11 → T15 → T16 ⇒ 15.71 + 15.86 + 17.12 +
17.36 + 17.00 + 17.85 + 15.82 = 116.72 ms. Initially, the
task ready for execution in Figure 1 is T0. After this task

is scheduled, T1 and T3 get tagged as ready tasks, and are
subsequently scheduled. This process is repeated until there
is no additional task left to be scheduled.

The scheduling of tasks starts with the prediction of final
temperatures of different processors after executing the first
ready task. For example, the predicted final temperature for
T0 is calculated using the heat model provided by Equation
6 and randomized execution times of tasks for respective
processor-speed combinations. For the heat model, we use
a typical value of β = 1 J/K and ρ = 0.009999 K/J as
per [29]. The initial temperature is chosen to be 313.15 K
(40 ◦C). Table II shows the final temperature values for Task
0. Once final temperatures are determined, the NormTemp
values can be calculated using Equation 5. These values are
shown in Table III. We set MaxTemp = 358.15 K (85 ◦C),
per [14].

Table II
STEP 1A OF THE TEDLS ALGORITHM

Task β Pnp ρ Tnp(t1) (t2 − t1) Tnp(t2)
Processor 1

0 1 4.57 0.0099 313.15 15.55 333.88
Processor 2

0 1 5.49 0.0099 313.15 14.64 345.27
Processor 3

0 1 6.40 0.0099 313.15 13.72 355.07

Table III
STEP 1B OF THE TEDLS ALGORITHM

Task Tnp(t2) MaxTemp NormTemp
Processor 1

0 333.88 358.15 0.93
Processor 2

0 345.27 358.15 0.96
Processor 3

0 355.07 358.15 0.99

Next, TEDLnp is calculated using Equation 3 and the result
is tabulated in Table IV.

Table IV
STEP 1C OF THE TEDLS ALGORITHM

Task SL DA TF ∆ DL NormTemp TEDL
Processor 1

0 116.72 0.0 0.0 -0.91 115.80 0.93 123.65 ⇐
Processor 2

0 116.72 0.0 0.0 0.00 116.72 0.96 120.91
Processor 3

0 116.72 0.0 0.0 0.91 116.66 0.99 118.64

Given no task has been assigned to any processor yet, DA0p

= TF0p = 0 ms. Per Table IV, Task 0 has the highest value
of TEDL and yields the lowest value of NormTemp for
Processor 1. Hence, T0 is assigned to Processor 1. Per Figure
1, the next ready tasks are Task 1 and Task 3. Similar tables
can be easily generated for these and subsequent ready tasks.

Figure 3(a) shows the resulting scheduling diagram for the
example DAG.

(a) TEDLS algorithm

(b) DLS algorithm

(c) EDLS algorithm

Fig. 3. Scheduling of Processors under the TEDLS, DLS and EDLS
algorithms

For comparative analysis, we applied both the DLS and
EDLS algorithms to the DAG of Figure 1. Figures 3(b)
and 3(c) show the resulting scheduling of tasks under these
algorithms, respectively.

En =
∑

Powernp × ExecT imenp (7)

We compared the consumed energy under the three algo-
rithms, per Equation 7, where, Powernp and ExecT imenp
are the power consumption and execution time for Task n on
Processor p, respectively. Energy consumption of processors
under the TEDLS algorithm is calculated to be 1.62 J .
This amounts to energy saving of about 45.69 % and
32.08 % in processors compared to when task scheduling
is done using the DLS and EDLS algorithms, respectively.
The execution time of the application under the TEDLS
algorithms is 171.39 ms, versus 150.67 ms (−12.09%)
and 188.80 ms (+10.16%), under the DLS and EDLS
algorithms, respectively.

We next used the heat model in Equation 6 to predict the
final processor temperatures. Figure 4 shows the predicted
final temperatures for processors scheduled with the TEDLS,
DLS and EDLS algorithms. The goal of this prediction is

not to find the exact value of processor temperatures, but
rather to compare how processor temperatures vary when
they are scheduled with different scheduling algorithms. It
can be seen from Figure 4 that the final temperature of
processors scheduled using the TEDLS algorithm is 5.71%
lower than the processors that are scheduled using the DLS
algorithm and 3.21% lower than the processors that are
scheduled using the EDLS algorithm. Thus, the TEDLS
algorithm results in lower temperature distribution among
the processors, making them less susceptible to hardware
faults.

(a) TEDLS algorithm

(b) DLS algorithm

(c) EDLS algorithm

Fig. 4. Processor temperatures under the TEDLS, DLS and EDLS
algorithms

IV. APPLICATION OF NAÏVE BAYESIAN CLASSIFIER
(NBC) TO TEDLS AND COMPARATIVE ANALYSIS

The example in Section III illustrated only processor
speeds P1@S1, P2@S1 and P3@S1. However, the pool of
processors in Figure 2 can have sixteen other processor-
speed combinations. Thus, for a particular instance of ap-
plication execution, there needs to be a single processor-
speed combination that meets the energy, temperature and
time budgets. Making such a decision becomes even more
difficult in the presence of large number of processors
with variable speed settings. In this section, we use the
Naı̈ve Bayesian Classifier (NBC) twice to speed up the
process as directed below. First, NBC is used to obtain

a set of processor-speed combinations that result in low
energy consumption. Next, NBC is used again to obtain a
processor-speed combination that produce the lowest pro-
cessor temperatures from the set of combinations with low
energy consumption.

Naı̈ve Bayesian Classifier was chosen for its lack of
complexity, shorter training time, less sensitivity to inaccu-
rate data and for its applicability in multi-class classification
problems. The algorithm is based on the Bayes’ theorem,
which is given by Equation 8, where P (A|B) is posterior
probability, P (A) is prior probability, P (B|A) is likelihood
probability and P (B) is probability of evidence.

P (A|B) =
P (B|A)P (A)

P (B)
(8)

One generic example of a Naı̈ve Bayesian Classifier is given
in Figure 5. Here, the node labeled “Label” is the object that
has to be classified based on the features given in the nodes
f1, f2 ... fn.

Fig. 5. Typical Naı̈ve Bayesian Network

According to Bayes theorem the posterior probability of
“Label” belonging to the class “X” is given by Equation
9.

P (X|f1, f2...fn) =
P (X)× P (f1, f2...fn)|X)

P (f1, f2...fn)
(9)

Since the features are assumed to be independent in NBC,
this equation can be rewritten as Equation 10, where Z is
the probability of evidence and is constant.

P (X|f1, f2...fn) =
1

Z
× P (X)×

n∏
i=1

P (fi|X) (10)

In our case, we initially choose processor combinations
which consume the least amount of energy, with the mini-
mum number of iterations. Here, the object to be classified is
Energy and the influencing factors are the different processor
speed combinations (C1, C2 ... Cl). As the DAG application
remains constant, it is not thought of as an influencing factor.
Thus, using NBC, if we want to find P (E|Ci) (i.e. Energy
class for a given set of processor speed combinations), based
on Equation 10, we come up with Equation 11. Here, we
have ignored probability of evidence, as it is only a scaling
factor. In Equation 11, Ci denotes a particular processor-
speed combination; e.g. P1@S1, P2@S1 and P3@S1. l is
the total number of processor-speed combinations. For sim-

plicity and accuracy, our classifier has three distinct classes.
Based on Equation 11, the probabilities of different Energy
(E) classes given a certain combination Ci is calculated. Ci
is linked to the Energy (E) class that results in the highest
value of probability.

P (E|Ci) = P (E)

l∏
k=1

P (Ck|E) (11)

Once, the lowest energy consuming combinations are identi-
fied, a second NBC, described using Equation 12, is applied
on these combinations. It classifies these combinations based
on processor temperature to obtain the combination with the
lowest processor temperature.

P (T |Ci) = P (T)

l∏
k=1

P (Ck|T) (12)

To implement either of the learning schemes described in
Equation 11 or 12, we need to create two tables, “TestSet”
and “DataSet”. Figure 6 shows the block diagram of our
scheme, which utilizes tables “TestSet” and “DataSet”.

Fig. 6. Block diagram of our learning scheme

“TestSet” contains all combinations for which the resultant
energy consumption or processor temperature is not known.
The “DataSet” contains processor combinations, which have
been examined by the TEDLS algorithm as well as their as-
sociated consumed energy or processor temperature. DataSet
is used to train the Bayesian Network. Three distinct classes
or bins are defined to classify each combination. Each
energy or temperature class represents a range of energy
or temperature values. Steps within the loop are executed
at least once before the evaluation of the while statement.
In the beginning of the do-while loop, the classifier trains
itself using the processor data available on the DataSet. Next,
the classifier classifies all available entries in the TestSet. In
the following step, a random combination is selected from
the lowest class (Class 1) combinations. Next, the TEDLS
algorithm is applied on the selected combination. In Step
6, the results are stored in the DataSet. In the final step,
the algorithm checks for the presence of any combination
in Class 1. As long as there is a combination assigned to
Class 1, the loop repeats. Otherwise, the loop terminates.

At this point, the DataSet can be checked to obtain a group
of combinations with the lowest energy consumption. The
effect of this learning algorithm can be compared with
random selection to find the same group of processor-speed
combinations. In random selection, the TEDLS algorithm
is applied to all combinations at random and their energy
values are obtained until a certain energy budget is met.
Figure 7 shows the flowchart of the simulation. Algorithm 2
gives an overview of the learning algorithm for obtaining
lowest energy consuming combinations.

Algorithm 2 (Learning Algorithm for obtaining low energy
consuming processor-speed combinations)

1: do :
2: Train Bayesian Network with DataSet
3: Apply Bayesian Learning on TestSet
4: Select 1 processor combination from lowest Energy
class
5: Run TEDLS with the selected combination
6: Update DataSet with new information TEDL
7: while a combination is assigned to Class 1 (Lowest
class)

For simulation purposes, we have applied the learning
algorithm to schedule the DAG application in Figure 1 onto
the processor pool P in Figure 2. A group of processor speed
combinations with low energy consumption is generated
using Algorithm 2. The energy budget is set to < 0.4J ,
which is lower than the upper limit of the lowest class
(i.e. Class1). Simulation with our learning scheme and
random selection were run 100 times each. Figure 9 shows
the simulation results, where we compared the number
of iterations required to come up with processor-speed
combination for minimal energy consumption for a 20 task
DAG. Our simulation result demonstrates that initially both
the learning algorithm and random selection have the same
performance. As the NBC network gets trained, the learning
scheme arrives at the processor-speed combination with the
lowest energy consumption in 9 iterations, compared with
15 iterations for the random selection.

Next, the second NBC is applied to the group of
processor-speed combinations with low energy consumption.
The objective is to obtain a particular combination that
generates the lowest processor temperatures for application
execution. For achieving this, NBC is applied in a similar
fashion as in Algorithm 2. However, for Step 4, one proces-
sor combination from lowest Temperature class is selected.
Once, classification terminates, combinations that produces
temperatures closest to 75 ◦C [14] are chosen for application
execution. The flowchart of the simulation of this algorithm
is similar to that in Figure 7. The average processor tem-
perature budget is set to < 75 ◦C [14], which is lower than
the upper limit of the lowest class (i.e. Class1). Once again,
simulation with our learning scheme and random selection

Fig. 7. Flowchart of Simulation for arriving at minimal energy consump-
tion combinations

were run 100 times each. Figure 10 shows a comparison
of number of iterations to come up with processor-speed
combination for minimal processor temperature for a 20 task
DAG. Our simulation result demonstrates that the learning
algorithm arrives at the processor-speed combination with
the lowest processor temperature in 10 iterations, compared
with 14 iterations for the random selection.

Fig. 8. Processor Pool and their associated speed and power settings

Both Figures 9 and 10 show reduction in computational
steps to arrive at the ideal processor-speed combination.
However, to illustrate the scalability of our learning scheme,
we next applied randomly generated 100 tasks and 200 tasks
DAGs to a processor pool of P ′ = {P1, P2, P3, P4, P5},
where P4 and P5 are high performance processors, as
depicted in Figure 8. Once again, for the sake of simulation,
we randomized the execution times and consumed power for
each of the 100 tasks and 200 tasks in larger DAGs for Pro-

cessors 1, 2, 3, 4 and 5 within ±10% of the nominal values
in Figures 2 and 8. Figures 11 and 12 show comparisons
of number of iterations to come up with processor-speed
combination from P ′ for minimal processor temperature
for 100 task and 200 task DAGs respectively. The average
processor temperature budget is set to =< 80 ◦C [14]. The
figures show that initially both the learning algorithm and
the random selection has low performance. This is because
the Bayesian network is yet to be trained adequately. As
the number of steps increases and the classifier trains itself,
the learning algorithm arrives at the ideal processor-speed
combination for the 100 task DAG in an average of 243.6
steps, compared with 369 steps for the random selection.
This implies that our learning scheme is approximately
33.98% faster than random selection in this case.

Fig. 9. Single case results of learning algorithm for obtaining low energy
consuming processor-speed combinations

Fig. 10. Single case results of learning algorithm for obtaining processor-
speed combinations with low processor temperature

Fig. 11. Processor speed combination selection for 100 task DAG with
learning and random selection

Similarly, for 200 task DAG, our learning scheme arrives
at the ideal combination at an average of 220.7 steps,
which when compared to random selection is 40.18% faster.
Reduction in steps to arrive at the ideal processor-speed
combination implies lower computational overhead. Thus,
this results in overall reduction of energy consumption
during compile time.

Fig. 12. Processor speed combination selection for 200 task DAG with
learning and random selection

V. CONCLUSION

In this paper we implemented Naı̈ve Bayesian Classifiers
(NBCs) to an offline algorithm that not only helps in
achieving low processor temperatures, but also produces
lower energy consumption compared to the energy efficient
EDLS algorithm. We implemented NBCs to arrive at an
ideal processor-speed combination that produces the least
amount of processor temperature and energy consumption.
Our results show that for 100 task and 200 task DAGs
our learning based approach arrives at the ideal processor-
speed combination more than 30% faster compared to when
random selection is used. As the computational overhead
decreases, this results in overall energy minimization during
program compilation.

REFERENCES

[1] M. Zahran, “Heterogeneous computing: Here to stay,” ACMQUEUE,
Volume 14 Issue 6, November-December 2016.

[2] D. A. M. M. A. Mohammed and J. M. Abdullah, “Green computing
beyond the traditional ways,” International Journal of Multidisci-
plinary and Current Research, Vol.3 (July/Aug 2015 issue) 2015.

[3] J. Luo and N. Jha, “Static and dynamic variable voltage scaling al-
gorithms for real time heterogeneous distributed embedded systems,”
15th International Conference on VLSI Design, pp. 719–726, 2002.

[4] C. M. Hung, J. J. Chen, and T.W.Kuo, “Energy-efficient real time
task scheduling for a DVS system with non-DVS processing element,”
ACM/IEEE Conference of Design, AUtomation and Test in Europe,
pp. 303–312, December 2006.

[5] Z. Zong, X. Qin, X. Ruan, K. Bellam, M. Nijim, and M. Alghamdi,
“Energy-efficient scheduling for parallel applications running on
heterogeneous clusters,” 2007 International Conference on Parallel
Processing (ICPP 2007), September 2007.

[6] R. Xu, R. Melhem, and D. Moss, “Energy-aware scheduling for
streaming applications on chip multiprocessors,” 28th IEEE Interna-
tional Real-Time Systems Symposium, December 2007.

[7] V. Shekar and B. Izadi, “Energy aware scheduling for dag structured
applications on heterogeneous and DVS enabled processors,” Pro-
ceedings International Conference on Green Computing, pp. 495–502,
August 2010.

[8] V. W. F. M. Y. Lim and D. K. Lowenthal, “Adaptive, transparent
frequency and voltage scaling of communication phases in MPI pro-
grams,” Proceedings of the 2006 ACM/IEEE Conf. on Supercomputing
2006, p. 14, November 2006.

[9] J. Butts and G. Sohi, “A static power model for architects,” 33rd
Annual IEEE/ACM International Symposium on Microarchitecture,
2000.

[10] S. S. A. Chandrakasan and W. Brodersen, “Low-power CMOS digital
design,” IEEE Journal of Solid-State Circuits), pp. 473–484, April
1992.

[11] Enhanced Intel SpeedStep Technology. http://www.intel.com/.
[12] Cool’n’quiet technology. http://www.amd.com/.
[13] M. S. A. K. O. Semenov, A. Vassighi and C. Hawkins, “Burn-in tem-

perature projections for deep sub-micron technologies,” Proceedings
of the International Test Conference 2003, pp. 95–104, September
2003.

[14] T. S. R. A. K. Coskun and K. Whisnant, “Temperature aware
task scheduling in MPSoCs,” Design, Automation Test in Europe
Conference Exhibition, pp. 1–6, April 2007.

[15] S. Sharifi and T. S. Rosing, “Accurate direct and indirect on-chip
temperature sensing for efficient dynamic thermal management,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, pp. 1586–1599, October 2010.

[16] R. T. S. Lu and W. Burleson, “Collaborative calibration of on-chip
thermal sensors using performance counters,” IEEE International
Conference on Computer-Aided Design (ICCAD), pp. 15–22, Novem-
ber 2012.

[17] R. Kabir and B. Izadi, “Temperature and energy aware scheduling of
heterogeneous processors,” 2016 Ninth International Conference on
Contemporary Computing (IC3), pp. 48 – 54, August 2016.

[18] M. Y. W. H. Topcuoglu, S. Hariri, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE
Transaction Parallel Distributed Systems, p. 260, March 2002.

[19] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures,”
IEEE Transactions on Parallel and Distributed Systems, pp. 175–187,
February 1993.

[20] D. Rajan and P. Yu, “Temperature-aware scheduling: When is system
throttling good enough?” The Ninth International Conference on Web-
Age Information Management, pp. 397–404, July 2008.

[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, 1988.

[22] M. Mascherini, “Learning the structure of bayesian networks repre-
senting influence relations among genes,” 2008 International Confer-
ence on Computational Intelligence for Modelling Control Automa-
tion, pp. 1023 – 1028, December 2008.

[23] M. Z. D. Liu and T. Li, “Network traffic analysis using refined
bayesian reasoning to detect flooding and port scan attacks,” 2008
International Conference on Advanced Computer Theory and Engi-
neering, pp. 1023 – 1028, December 2008.

[24] L. G. Y. Li, B. Fang and S. Wang, “Research of a novel anti-spam
technique based on users’ feedback and improved naive bayesian
approach,” International conference on Networking and Services
(ICNS’06), July 2006.

[25] J. L. K. Cheng and C. Zhang, “Rough set weighted nave bayesian
classifier in intrusion prevention system,” 2009 International Con-
ference on Networks Security, Wireless Communications and Trusted
Computing, April 2009.

[26] A. Aghaie and A. Saeedi, “Using bayesian networks for bankruptcy
prediction: Empirical evidence from iranian companies,” 2009 Inter-
national Conference on Information Management and Engineering,
April 2009.

[27] S. Taheri and M. Mammadov, “Learning the naive bayes classifier
with optimization models,” International Journal of Applied Mathe-
matics and Computer Science, December 2013.

[28] Task Graphs For Free. [Online]. Available:
http://ziyang.eecs.umich.edu/ dickrp/tgff/

[29] T. K. N. Bansal and K. Pruhs, “Speed scaling to manage energy and
temperature,” Journal of the ACM (JACM), vol. 54, March 2007.

